ARMY RESEARCH LABORATORY | m

The Information Distribution Technology:
LIBXMAP -

Application Program Interface

Kenneth G. Smith
Holly A. Ingham

TR 498 L E A“t 1

94-26928
IlI||l|\Illlllllllil\lllllllllll -

DTIC ATALTTY INCPECTED 8

94 8 23 104

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

nd

o4 © °°
e

NOTICES

Destroy this report when it is no ionger needed. DO NOT retumn it to the originator.

Additional copies of this report may be obtained from the National Technical information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfieid, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, uniess so designated by other authorized documents.

The use of trade names or manufacturers’ names in this report does not constitute
indorsement of any commercial product.

Form Approved
OMS No. 0704-0188

89¢ 1 hOUr per respome, Mmmm g invgtr earcung
mwmmot

Public Surden for this collection of nfo » ot [
Mnmm m__“ ,m of
Oave Nighway, Suite 1204, Arlington,

coliection mmwmm \gron o ormation Operstons
- VA 222024302, aunmm.uuwnmmwmmmMM) wmnton

other aspect of the
m 1215 jefferson
20503.

3. REPORT TYPE AND DATES COVERED

[T, AGENCY USE ONLY (Leave Diank)]2. REPORT DATE
August 1994 Final, Jan 92 - Jun 93
4 AND SUBTITLE S. FUNDING NUMBERS
The Information Distribution Technology: LIBXMAP - Application Program 4B592-462-52-3026
Inserface CC: 4B5200
[6. AUTHORIS)
Kenneth G. Smith and Holly A. Ingham
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
U.S. Amny Research Laboratory

ATTN: AMSRL-CI-SB
Aberdeen Proving Ground, MD 21005-5067

[9. SPONSORING / MONITORING AGENCY NAME(S) AND ADODRESS(ES)
US. Amy Research Laboratory

TIN: AMSRL-OP-AP-L

Aberdeen Proving Ground, MD 21005-5066

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ARL-TR-498

B YTy Sy T
11. SUPPLEMENTARY NOTES

128, OISTRIBUTION / AVAILABIITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

s as————
13. ABSTRACT (Maximum 200 words)

emerging IDT concepts.

‘The Military Computer Science Branch (MCSB) of the Advanced Computational and Information Sciences Directorate
(ACISD) of the Army Research Laboratory (ARL) has been developing concepts to provide enhanced information exchange
cpasbilities 10 “fighting level” commanders and soldiers as part of an ongoing, long-term research effort known as the
Information Distribution Techunology (IDT). The IDT concepts have been successfully demonstrated on numerous
occasions, most notably during the 1989 LABCOM Smart Weapons Cooperative Progam Demonstration and the 1991
Second Counter-Air Symposium for Army Aviation and Air Defense. The report discusses a new software library created
o facilitate the development of integrated application programs for testing, refining, and demonstrating existing and

14, SUBJECT TERMS

OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

application program interface, IDS, IDT, information systems, tactical data systems [7&. PRice cooe

BTy YYDy S
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION

YT T Y S — i Yy
19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF ABSTRACT
UNCLASSIFIED UL

15. NUMBER OF PAGES
32

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Preycribed by ANSI St9 239-18
299-102

INTENTIONALLY LEFT BLANK.

PREFACE

The Military Computer Science Branch (MCSB) of the Advanced Computational and
Informational Sciences Directorate (ACISD) of the Army Research Laboratory (ARL) has
been developing concepts to provide enhanced information exchange capabilities to “fighting
level” commanders and soldiers as part of an on—going, long term research effort known as
the Information Distribution Technology (IDT). The IDT concepts have been successfully
demonstrated on numerous occasions, most notably during the 1989 LABCOM Smart Weap-
ons Systems Cooperative Program Demonstration and the 1991 Second Counter— Air Sympo-
sium for Army Aviation and Air Defense. This report discusses a new software library created
to facilitate the development of integrated application programs for testing, refining, and dem-
onstrating existing and emerging IDT concepts. The authors wish to thank Eric Heilman and
Fred Brundick for their insightful contributions in reviewing this report.

tcocssion For : WE
A T - 4
O %
od N
Le
By ...
Dl}?!:‘ﬂ'ﬁ.‘iﬂ:;/ ";’ L
Avur . 1 ‘:ie‘
aw

INTENTIONALLY LEFT BLANK

321
3.22
323

4.1
4.2

Client—to~XmapCommands...........ccooveevieennnennnnnnnnnan,
Xmap—to—Client Commands............ccoiiiiiiiiiiiiiiiiiiann,
CONCLUSION.iiiitiiiiieieiiinsesennsesenansacsnansennns

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES
Eigure Page
1. Information Distribution Technology.ocoie. 2

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

The Military Computer Science Branch (MCSB) of the Advanced Computational and
Informational Sciences Directorate (ACISD) of the Army Research Laboratory (ARL) has
been developing concepts to provide enhanced information exchange capabilities to “fighting
level” commanders and soldiers as part of an on—going, long—term research effort known as
the Information Distribution Technology (IDT). The goal of the IDT project is to facilitate the
exchange of tactical information over standard combat net radios (CNR) at data rates as low
as 1,200 bits per second. To satisfy this goal, the IDT seeks to improve information distribution
by exchanging data as concisely as possible, only when absolutely necessary, and as efficiently
as possible.

Paramount to the success of the IDT is the ability to test, evaluate, and demonstrate
information distribution concepts being developed. For this purpose, several prototype exper-
imental software application programs were developed. As the IDT matured, new application
programs were needed that could more readily address the information distribution concepts.
Hence, a new suite of demonstration application programs was developed. These new pro-
grams are designed to be more portable, more flexible, easily tailored, quick to develop, and
integrateable with each other. A key component of the new application programs was an inter-
face library called libxmap which is the focus of this report.

2. OVERVIEW

2.1 Information Distribution Technology

The IDT is prototype software designed to provide enhanced information exchange capa-
bilities to “fighting level” commanders and soldiers. The goal of the IDT project is to facilitate
the exchange of tactical information over CNRs at data rates as low as 1200 bits per second.
The development of the IDT is guided by three tenets for exchanging battlefield information
(Chamberlain, 1990). Data is exchanged 1) as concisely as possible, 2) only when absolutely
necessary, and 3) as efficiently as possible. Further, the IDT seeks to combine military science
technology with state —of - the —art computer science technology to produce a powerful, effec-
tive, and flexible information exchange technology.

At the heart of the IDT is a free —form distributed factbase (DFB) that stores all cf the in-
formation pertinent to a battlefield situation (Hartwig, 1991). A security control module
(SCM) controls the flow of information into and out of the DFB. Data distribution rules pro-
vide the SCM with guidance for exchanging information with other DFBs. This information
exchange is handled by the IDT’s fact exchange protocol (FEP) (Kaste, 1990). “Triggers” with-
in the DFB allow application programs to be notified when specific information is entered into
the DFB that may be of interest to application programs. Lastly, an interface (I/F) exists that
allows sophisticated application programs to extract, enter, and modify information stored in
the DFB. See Figure 1.

Information stored in a DFB is an abstract representation of military concepts and current
battlefield perceptions. Information is stored and manipulated in a manner consistent with the
designtenets of the IDT. It is stored in the DFB in “facts” — logical groupings of data represent-
ing a unique item, event, or activity. Each fact is an instantiation of a pre—defined data struc-
ture called a facttype. A facttype is a template that defines the structure of a fact; i.e., the names
of the fields in a fact and the type of data each field represents.

IDT

: DFB 4—'

; . ; APPLICATION PROGRAMS
a q FEP BPS E

' FACT- R ;

4 BASE []

’ SCM DFB ’

: r N

E DATA DICTIONARY CSINGLE . .
' HOST ‘
' DISTRIBUTION RULES ;
’ FRIENDLY & ENEMY TO&E, UNITS, '
N OVERHEARING RULES VEHICLES, WEAPONS, AMMO '
: CAPS FACTS :

Figure 1. Information Distr.uution Technology

Data is stored in the DFB so as to be most manipulable by computers, ot by humans. One
of the functions of application programs isto cnter and subsequently modify data in the DFB.
Application programs provide the unique service’ of presenting DFB datain a form that is eas-
ily understood and manipulable by humans. Application program interfaces are the means for
testing, evaluating, and demonstrating the IDT concepts.

2.2 Application Programs

To date, several application programs have been developed that, working in concert with
each other, demonstrate these concepts. A viable, militarily sound and realistic IDT demon-
stration package has been developed to exercise the IDT concepts.

Leveraging off of earlier involvement in the 1989 Smart Weapons Systems (SWS) LAB-
COM Cooperative Program demonstration and the 1991 joint Human Engineering Laborato-
ry—Ballistic Research Laboratory Counter—Air Program (HELCAP) demonstration, six
application programs have been developed. These application programs are Xmap, Milmap,
Org Chart, Vitracker, Tracker, and Extract. They provide the capability to demonstrate IDT con-
cepts being used to exchange battlefield information based on both a ground and air war sce-
nario consistent with a high~intensity European—based conflict in the area of the Fulda Gap
region of Germany.

Extract and Tracker are the scenario driver programs providing the data depicting the
ground and air war, respectively. Milmap, Vtracker, and Org Chart are user application pro-
grams that allow a commander to view/monitor the battle as it unfolds. Xmap is a general pur-

T The uniqueness of this service stems from the fact that data can be entered or modified in the DFB via
the FEP. However, only application programs are capable of presenting data in a user—friendly format.

pose mapping application program that provides the common medium upon which unit and
other overlay symbols are placed while viewing the battle. Milmap, Viracker, and Org Chart use
Xmap for all map—related functions (drawing unit symbols, range fans, routes, borders, areas,
etc.) and can interact with each other through it. The means by which application programs
communicate with Xmap is via the libxmap software library.

3. LIBXMAP

3.1 General Overview

Libxmap is a library of software routines used by Xmap and client application programs that
communicate with it. Such application programs will be hereafter referred to interchangeably
as “clients,” “client programs,” or “client application programs.” Xmap and application pro-
grams that connect to Xmap follow a client—server paradigm, where Xmap is the server.
Within this paradigm, the Xmap server provides the basic or generic capabilities for displaying
a map and overlay symbols. For developmental purposes, the map used was digitized from a
photograph of a 1:100,000 scale map of the Hunfeld region of Germany. Xmap is written in C
and uses the X Window System. It provides map manipulation capabilities for zooming, pan-
ning, resizing the display window, turning on or off grid lines, and for creating and/or editing
lines.

Client programs provide the link between Xmap and the military information to be dis-
played in Xmap. Clients decide when, where, and what information to display on the map in the
form of map “overlays.” This information is sent to Xmap via the standardized library, libxmap.

The client—server paradigm for application programs improves the IDT demonstration by
1) speeding up the development of client, or “military,” application programs, 2) providing a
single common map display program useable by all application programs, and 3) eliminating
the need for client programs to concern themselves with windowing issues (e.g., resizing, expo-
sures, drawing overlays that aren’t in the field of view, etc.). This architecture allows client
application programs to be developed quickly and reliably and does not rzquire the developer
to be an expert in developing graphical user interfaces. See Figure 2.

7 XMap (server) Applications (clients)
=] |
[[[

Appl 1 7
Appl 2
Appl 3

Appl n

Figure 2. Libxmap Architecture

3.2 Functional Review

Libxmap is a collection of subroutines that are used to exchange information between
Xmap and client programs. Client programs connect to Xmap and then command it to draw
objects, modify existing objects, and remove objects. Xmap complies with these commands
while providing a user window interface (e.g., mouse interaction, window resize capability,
etc). Events that may be of interest to clients, such as mouse clicks on objects drawn by Xmap,
are relayed to the client programs by Xmap through libxmap. In this fashion client programs
maintain control over the objects that they commanded Xmap to display. There are two key
concepts underlying the interaction between client programs and Xmap: objects and events.

3.2.1 Objects

Objects are the main component, or unit of information, on which Xmap and client pro-
grams interact. Client programs command Xmap to create, modify, or remove objects. To cli-
ent programs, these objects take the form of unit symbols, map symbology, points, lines, routes,
areas, etc. To Xmap, these are all just objects. To provide a means for client programs and
Xmap to act on sets and/or subsets of objects, attributes are associated with each object that
categorize them into object types and classes. These attributes are optionally set by client pro-
grams. As of the writing of this report, only a small number of types and classes have been
defined and are explained in Appendix A.

3.2.2 Events

Events are actions that are performed by the user through Xmap's user interface. Client
programs can register their interest in specific events with Ximap or default to receive notifica-
tion of all events. Typically, events occur on objects via mouse button presses. Other events are
line modification and object relocation. Button press events generate a BUTTON_PRESS
event communication from Xmap to clients identifying which mouse button was pressed and
on which object the mouse was pressed. The modification of lines (performed through Xmap's
user interface) generates a LINE_CHANGE event that identifies the line that was modified
and the new coordinates of the segments comprising the line.

Certain commands from client programs may have an indirect impact on other objects. For
instance, moving one object may cause another object to move automatically. For such a case,
Xmap generates a SYMBOL_CHANGE event identifying the object that changed and its new
location. Such indirect changes occur with “associated” objects.

3.2.3 Links and Associations

Objects may be linked together to form logical relationships to simplify client program-
ming. Libxmap imposes no constraints on why objects are linked; it simply provides the capa-
bility ¢o link them. There are no restrictions on the number or type (one—to—one, one—-to—
many, or many—to~one) of links between objects. Libxmap distinguishes between two kinds
of links, referred to simply as “links” and “associations.”

“Links” are a one—to—one relationship used to visually bind two objects. Xmap draws a
line between objects that are “linked.” If one of the objects move, then the line between them
follows it automatically. If either object is removed, then the line (and link) between them is
automatically removed.

Associations form a relationship between objects that governs the way objects respond to
actions. Associations enable related objects to perform as a group. Unlike linked objects

associated objects have no line drawn between them in Xmap (although, associated objects can
also be linked if a connecting line is desired). Associations are used to spatially bind objects.
That is, when one object moves, any associated objects will also move to maintain their relative
physical position to the moved object. There are two types of associations: MASTER_SLAVE
and GROUP. In MASTER_SLAVE associations, if the master object moves, then any slave
objects will follow it, but not vice versa. In a GROUP association, if either object moves, then
all other objects follow it.

4. LIBXMAP Functions

Libxmap is divided into two sets of routines that provide for client—to—Xmap communica-
tion and Xmap—to—client communication. Client—to~Xmap commands, or client com-
mands, are routines by which client programs connect and send object draw/modify requests to
Xmap. Xmap—to—client commands, or Xmap commands, enable Xmap to send synchronous
and asynchronous information to client programs.

Below is a brief description of each command. For readability, the commands are italicized
and followed by open and closed parentheses, e.g., command_name(). Xmap —to—client com-
mands are differentiated from client—to—Xmap commands by a preceding underscore char-
acter, “_”, in the command name. More detailed information on each command can be found
in Appendix B.

4.1 Client—to—Xmap Commands

Xmap_connect() is the command used by client programs to connect to Xmap. This com-
mand allows clients to request notification of event occurrences. Upon successful connection
Xmap assigns a unique identification number to the client and returns that number to the client
for use in all future exchanges. Clients terminate their connection to Xmap via the
xmap_close() command.

Clients instruct Xmap to draw an object using the xmap_draw_symbol() command. The
object’s location, foreground and background colors, class type and size are specified. For ref-
erencing purposes, Xmap returns an object identification number to the client. The object
identification number and the client identification number uniquely identify an object. Attrib-
utes of objects can be modified via the xmap_change_symbol() command. Objects may be
removed singularly using the xmap_remove_symbol() command. The xmap_remove_class()
command removes all objects of the specified class type for the particular client.

There are twoways for clients to draw lines:xmap_add_line() andxmap_convert_line(). The
xmap_add_line() command is used when the client supplies the end points of the segments
defining the line tobe drawn. Thexmap_convert_line() command is used when a client converts
a line created locally via Xmap to a line “owned” by the client. Lines are modified via the
xmap_change_line() command. The xmap_remove_line() command is used to remove lines.

To show that two objects are linked together (illustrated by a line connecting the two objects
in Xmap), the xmap_add_link() command is used. Links are removed via the
xmap_remove_link() command. Objects can be associated (with no visible link) using the
xmap_add_association() command. Associations are removed using the
xmap_remove_association() command.

A somewhat specialized command exists to instruct Xmap to draw range fans. Range fans
are used to show the area in which a weapon system is able to fire. To draw a range fan the

xmap_draw_rangefan() command is used. Subsequently, range fans are removed using
xmap_remove_rangefans(). Range fans originate from the center point of an object that isiden-
tified in the xmap_draw_rangefan() command. Range fans are automatically associated with
the object from which they originate.

4.2 Xmap-to—Client Commands

_Xmap_connect() is the command used by Xmap to establish itself as the server in the cli-
ent-server paradigm. Once initialized, it listens for new client connections and polls any exist-
ing connections for new client requests. When a new client connects, Xmap sends a unique
number to the connecting client via the _xmap_send() command to be used by the client in all
future communications with Xmap. Connected clients are informed of an impending closure
of the network server connection via the _xmap_close() command. Errors are reported to cli-
ents via the _xmap_error() command.

Clients are notified of any generic button press events via the _xmap_button_press() com-
mand. A generic button press event, or “click,” is classified as a mouse button press occurring
anywhere within the Xmap display window. Xmap sends clients the unique object identification
number of the clicked object (or 0 to indicate the map background, not an object, was pressed),
the mouse button number that caused the event, and the map grid location (easting and north-
ing) of the button press.

When a user clicks on a line, Xmap responds by sending a line click message via the
. _line_click() command. This command contains the corresponding easting and northing
coordinates of each segment comprising the clicked line. _Xmap_line_change() is a command
used by Xmap to inform a client when a line has been edited by the user through Xmap's line
editing control panel.

Association of objects using a MASTER/SLAVE configuration can cause a change in loca-
tion of one object when the other object’s location is changed. Clients are informed of the loca-
tion of the “slaved” object via the _xmap_symbol_change() command.

5. Conclusion

The libxmap library is an integral component of the application programs used to test, eval-
uate, and demonstrate the information distribution concepts being developed and explored as
part of the IDT. It provides a uniform medium for linking together the various demonstration
application programs and provides the utility to facilitate the development and integration of
new application programs.

6. REFERENCES

Chamberlain, Samuel C. “The Information Distribution System: IDS~An Overview.” BRL~-
TR-3114, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD,
July 1990.

Hartwig, George Wm. Jr. “The Information Distribution System: The FactBase.”
BRL~-TR-3247, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground,
MD, July 1991.

Ingham, Holly A. “Xmap: A General Purpose Mapping Program.” U.S. Army Research Labo-
ratory, Aberdeen Proving Ground, MD, to be published.

Kaste, Virginia A. “The Information Distribution System: The Fact Exchange Protocol—A
Tactical Communications Protocol.” BRL—MR —-3856, U.S. Army Ballistic Rese Lab-
oratory, Aberdeen Proving Ground, MD, August 1990.

Smith, Kenneth G. and Eric G. Heilman. “Information Distribution Technology Applied to
Army Aviation and Air Defense Counter— Air Operations.” BRL—-TR~-3397, U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1992.

Smith, Kenneth G. “Vtracker — An Air Track Report Scenario Driver.” U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, to be published.

INTENTIONALLY LEFT BLANK.

APPENDIX A:
OBJECT TYPES AND CLASSES

INTENTIONALLY LEFT BLANK.

10

Objects and Classes

Application programs instruct Xmap to create, move, modify, and remove objects. To facil-
itate the application program’s tasks of manipulating objects, they can be categorized into
groups of classes. Application programs assign group and class attributes to each object they
create. Groups and classes allow objects to be manipulated as a set so that operations can be
performed en masse. For example, an application program can instruct Xmap to remove all
objects of class “line.”

The definitions and uses assigned to each group and class are not rigidly siated. During pro-
totype development, they were created on an “as needed” basis as determined by the current
application programs. To date, the potential in creating and assigning group and class attrib-
utes to objects has not been fully exploited.

Object Groups

Below is a list of the current object groups along with a suggested use for each. Note that
each group name starts with “OB” for OBject group.

* OB_SYMBOL - object is typically a unit symbol, although symbols exist for other
features such as bridges, buildings, etc.

e OB_TEXT - object is a text string

* OB_POINT - object is a military operations “point,” e.g., coordination point

¢ OB_LINE - object is a military operations “line,” e.g., phase line, FEBA, border
* OB_AREA - object delineates an area, e.g., no fire zone

¢ OB_RANGEFAN - object depicts a unit’s range fan (area in which its weapons can
fire)

e OB_LINK - object “links” two other objects together with a visible line
¢ OB_ASSOCIATION - object “links” two other objects together spatially, i.e., if
one object moves, the associated object will move with it, but with no visible line
Object Classes
Below is a list of the current object classes along with a suggested use for each. Xmap

requires that all objects be assigned a group and class identifier. Note that each class starts with
“CL for object CLass.

e CL_UNDEFINED - used by application program to specify no class attribute
e CL_UNIT - object is of group OB_SYMBOL and represents an actual unit

e CL_SENSING - object is of group OB_SYMBOL and represents the reported
observation of a unit (typically an enemy unit)

e CL_LINE - object is of group OB_LINE. Possible future use is to have several dif-
ferent types (or classes) of lines

e CL_TRACK - object is of group OB_SYMBOL and represents an air defense
track

11

e CL_LINK - object is of group OB_LINK (see OB_LINK above)

¢ CL_RANGEFAN - object is of group OB_RANGEFAN (see OB_RANGEFAN
above)

e CL_POINT - object is of group OB_POINT (see OB_POINT above)

12

APPENDIX B:
LIBXMAP FUNCTIONS

13

INTENTIONALLY LEFT BLANK.

14

Libxmap Functions

Libxmap is a software library of subroutines, or commands, used to exchange information
between Xmap and client application programs. This appendix contains a listing of all of the
commands along with a brief explanation of the arguments comprising each command and a
short description. It is divided into two sections describing the commands available to client
programs for communicating with Xmap and the commands available to Xmap for communi-
cating with its clients.

Client Commands

Below is a list of the commands available to client programs for communicating to Xmap. For
each command there is a brief explanation of its intended use as well as its syntax.
/t

~ Xmap_connect ()
3

* Command used by application programs to open a connection to Xmap.
*/

struct pkg_conn *

xmap_connect(host, switch_array, ev_button, ev_keyboard, ev_geometry, ev_object);

char *host; /* hostname to connect to */

struct pkg_switch switch_array [; /* array of switching routines */

int ev_button /* application’s interest of button events */
ev_keyboard, /* application’s interest of keyboard events */
ev_geometry, /* application’s interest of geometry events */
ev_object; /* application’s interest of object events */

“Host” is the name of the machine on which Xmap is running. “Switch_array” is used for
specifying the routines in the client program that are called when Xmap sends information
through the pkg protocol. “Ev_button,” “ev_keyboard,” “ev_geometry,” and “ev_object”
are flags used by the client to indicate its interest in X events of the named type that occur
within Xmap's window. For example, if an object is picked using the mouse and a client
set “ev_object” to TRUE then Xmap would notify the client which object was picked and
by which mouse button. In response, Xmap sends a message back to the client giving it its
unique client identification number by which Xmap identifies it.

Return: A pointer to a pkg connection structure. Each client program gets a unique pkg connection
structure that is used by the pkg routines for communicating to the client programs.

/¥

~ xmap_close()
*

* Command used by application programs to close a connection to Xmap.
*/

xmap_close(conn)
struct pkg_conn *conn; /*Application program’s connection to Xmap */

15

“Conn” is the pkg connection structure for this client (obtained when it first connected to
Xmap). This routine informs Xmap that the client is closing its connection. Any objects that
the client previously instructed Xmap to display are removed.

Return: Not used.

i,

:xmap_send ()

*Test routine for application program to send information to Xmap.
*/

xmap_send (msg_type, msg. conn)

int msg_type; /* Define (from libxmap.h) */
char *msg; /* Contents of message */
struct pkg_conn *conn; /* Application program'’s connection to Xmap */

“msg_type” is a #define that specifies the type of message thatis being sentto Xmap. “msg”
is the actual message. “conn” is the client’s pkg connection structure.

Return: Not used.

/¥
~xmap_add_symbel ()
®

* Routine used by application programs to draw symbols on the map.

* This routine draws NEW symbols, or “objects” t¢ Xmap, hence a handle id
* must be associated with the symbol (object).

*/

int
xmap_add_symbol (symbol, fg_color, bg_color, scale, x, y, class, conn, fid, client_id)
char *symbol; /*Symbol string to draw. */
int fg_color, /* Foreground color of symbol */
bg_color, /* Background color of symbol */
} B /* Map grid coordinates (easting, northing) */
class; I* Class type of symbol object */
float scale; /* Scaling factor for symbol */
struct pkg_conn *conn; /* Application program’s connection to Xmap. */
dkb_factid_t fid; /* Fact id associated with this symbol. */
int client_id; /* Client identifier number. */

This routine is used for drz-ving unit symbols on the map. To Xmap, a unit symbol is just
another overlay symbol, or object. Xmap identifies objects by their handle id and the client
id of the client program that submitted the command to draw the object. The handle id must
be unique to a specific client. That is, objects drawn by a client must never share the same
handle id. To ensure this uniqueness, and to alleviate the client programs from the burden
and task of assigning unique handle ids, libxmap assigns the handle id for all new objects.
“symbol” is a string recognized by the symbol drawing library, symlib, that describes the
unit symbol to be drawn. “fg color” and “bg color” are #defines that are described in sym-

16

bol.h used for specifying the foreground and background colors of the symbol. “x” and “y”
are the UTM map coordinates for where the symbol should be drawn. The center of the
symbol is drawn at this coordinate. “class” is a #define that further identifies the type of
object being drawn. The class defines are in libxmap.h. Though not yet implemented, the
idea was that Xmap could be instructed to act on whole classes of objects rather than single
objects. “scale” is the factor by which symbols are scaled down when drawn by the symbol
drawing library. Typical values are defined in symbol.h. “conn” is the client’s pkg connec-
tion structure. “fid” is the IDT fact id of the fact that is associated with the symbol being
drawn. It is included so that other client programs that pick this symbol have a source of
information pertaining to the symbol. “client_id” is the client identification number of the
client that is drawing the symbol.

Return: Handle id of new object.

/¥

~ xmap_change_symbol ()

* Routine used by application programs to change attributes of a symbol
* drawn on the map. “handle” should have been previously assigned via

* xmap_add_symbol (). “trace” instructs Xmap whether or not to draw a
* (volatile) line from the old location to the new location showing the

* path of the symbol (if its location changed).

¥/
void
xmap_change_symbol (handle, client_id, symbol, fg_color, bg_color, scale, x, y, class, trace, conn,
fid)
char *symbol; /* Symbol string to draw. */
int handle; /* Handle id of object to change */
int client_id; /* Client identifier number. */
int fg_color, /* Foreground color of symbol */
bg color, /* Background color of symbol */
class, /* Object type class */
XY /* Map grid coordinates (easing, northing) */
float scale; /* Scaling factor for symbol */
int trace; /* Shows trail of moved symbol. */
struct pkg_conn *conn, /* Application program’s connection to Xmap. */
dkb_factid_t fid; /* Fact id associated with this symbol. */
This routine is used to change one or more attributes of objects that have been previously
displayed (through xmap_add_symbol ()). “symbol,” “fg_color,” “bg_color,” “class,”
“x,” “y,” “scale,” “trace,” and “fid” can be changed. More than one attribute may be
changed in a single call to xmap_change_symbol (). For details on each attribute, see
xmap_add_symbol ().
Return: Not used.

17

Iad

~ xmap_remove_symbol ()

L

* Removes a previously added symbol.

*/

void

xmap remove symbol (handle, client_id, conn)

int handle; /* Handle id of object to change */

int client_id; /* Client identification number. */

struct pkg_conn *conn /* Application program’s connection to Xmap. */
This routine is used to remove previously drawn symbols from Xmap. “handle_id” and
“client_id” are the same as was used with xmap_add_symbol (). “conn” is the client’s pkg
connection structure.

Retumn: Not used.

I*

~ xmap_remove_objects ()
*

* Routine to remove all objects of a particular type, or all classes of a

* particular type of object.
*/
void
xmap_remove_objects (type, class, conn)
int type, /* Type of object te remove */
class; /* Class of object type to remove */
struct pkg_conn *conn; /* Application program’s connection to Xmap. */

This routine is used to remove a group of objects identified by their “class” or more specifi-
cally by a particular “type” of a “class.” “type™ and “class” definitions can be found in libx-
map.h. “conn” is the client’s pkg connection structure.

Return: Not used.

J*

~ xmap_add_line ()

L g

* Routine used by application programs to draw lines on the map.

* This routine draws NEW lines, or “objects” to Xmap, hence a handle id
* must be associated with the line (object).

*/

int

xmap_add_line (client_id, fid, coords, conn)

int client_id; /* Client identifier number. */

dkb_factid_t fid; /* Fact id associated with this line. */

char *coords; /* List of coords defining line segments. */
struct pkg_conn *conn; /* Application program'’s connection to Xmap. */

18

;*
L
|

This routine is used for drawing a line object in Xmap. Lines are defined to be a set of line

segments identified by the coordinates of the endpoints of each segment. “client_id” is the

client identification number of the client that is drawing the line. “fid” is the IDT factid of

the fact that is associated with the line being drawn. “coords” is a list of UTM coordinates

that specify the endpoints of the line segments that comprise the line. “conn” is the client’s
pkg connection structure.

Return: Handle id of new object (line).

1*

~ xmap_change line ()

*®

* Routine used by application programs to change already drawn lines on the

* map. The complete list of new coordinates is specified.
*/

void

xmap_change_line (client_id,, handle, fid, coords, conn)

int client_id; /* Client identifier number. */

int handle; /* Handle id of line */

dkb_factid_t fid; /* Fact id associated with this line. */

char *coords; /* List of coords defining line segments. */
struct pkg_conn *conn; /* Application program’s connection to Xmap */

This routine is used to modify an existing line in Xmap. The line to be modified is identified
by “client_id"” and “handle” (the handle of the line was assigned when the line was created
by xmap_add_line () or xmap_convert_to_line ()). “fid” is the IDT factid of the fact that
is associated with the line. Lines can only change by taking on a new shape; that is, line
segments are added, deleted, or modified in the original line. The entire list of segments
comprising the line must be stated in “coords,” not just the new or different segments.
“conn” is the client’s pkg connection structure.

Return: Not used.

*

~xmap_convert_to_line ()

%

* This routine is called when application programs want to instruct Xmap
* to convert a local line to a global line. Global lines are lines that
* application programs know about and have assigned fact ids to.

*/

int

xmap_convert_to_line (old_handle, old_client_id, new_client_id, fid, conn)

int old_handle, /* Handle Xmap knows it by */
old_client_id, /* Client id Xmap knows it by */
new_client_id; /* New client id of line */

dkb_factid_t fid; /* Fact id of line fact associated with line */

struct pkg_conn *conn /* Application program’s connection Xmap */

Free-hand creation of lines (that is, drawing lines using the mouse) is a function of Xmap.
Xmap provides the user interface to allow for the creation of lines using the mouse to input

19

the endpoints of the line segments comprising the line. When a line is created this way, it
is considered to be alocal line in Xmap; that is, it is an object that has a handle id and client
id that identify it with Xmap, not with a client application program. To interact with lines,
application programs must convert them from local lines to application—owned lines via
this xmap_convert_to_line () command. “old_handle” and “old_client_id” are the handle
and client ids of a local line. “new_client_id” is the client identification number of the
application program converting the line. A new handle will be assigned to this line and re-
turned to the client. The line is now identified by “new_client_id” and the new handle.
Hence, it is no longer a local line. “conn” is the client’s pkg connection structure.

Return: Handle id of line.
/*

~ Xmap_remove_line ()
*

* Removes a previously added line.

*/

void

xmap_remove_line (handle, client_id, conn)

int handle; /* Handle id of object to change */

int client_id; /* Client identification number. ¥/

struct pkg_conn *conn; /* Application program’s connection to Xmap. */
This routine is used to remove from Xmap a line that was previously drawn. It does not
work onlocal lines (see explanation in xmap_convert_to_line ()). “handle” and “client_id”
are used to uniquely identify the line being removed. “handle” was assigned to the line via
xmap_convert_to_line () or xmap_add_line (). “conn” is the client’s pkg connection struc-
ture.

Return: Not used.

J*

~ xmap_add_link ()
*

* Routine used by application programs to draw links on the map.
* This routine draws NEW links, or “objects” to xmap, hence a handle id
* must be associated with the link (object).

*/

int

xmap_add_link (handle_1, client_id_1, handle_2, client_id_2, fid, client_id, conn)

int handle_1, client_id_1; /* Handle/client id of first (from) object) */

int handle_2, client_id_2: /* Handle/client id of second (to) object) */
dkb_factid_t fid; /* Fact id associated with this link. */

int client_id; /* Client identifier number of link */

struct pkg_conn *conn; /* Application program’s connection to Xmap. */

This routine is used to draw a line between two objccts to show that the objects are linked
together. This link is not a line in the sense that a line is an object composed of one or more
line segments as created by xmap_add_line () or xmap_convert_to_line (). Rather it is

20

simply intended as a means for showing that two objects are linked together in some fash-
ion. The link follows the objects in the event that one of the object’s location changes. Xmap
removes the link if either of the objects is removed. “handle_1" and “client_id_1" uniquely
define the first object being linked and “handle_2" and “client_id_2" uniquely describe the
second object being linked. “fid” is the IDT factid of the fact associated with the link. “cli-
ent_id" is the client identification number of the application program stating the link and
“conn” is the client’s pkg connection structure.

Return: Handle id of the link.

/t
~ xmap_remove_link ()
*

* Routine used by application programs to remove links on the map.

*/

void

xmap_remove_link (handle, client_id, conn)

int handle; / * Handle of first link to remove */

int client_id; / * Client identifier number of link */

struct pkg_conn *conn /* Application program’s connec:on to Xmap. */
This routine is used to remove a link between two objects. “handle” is the handle id of the
link that was returned by xmap_add_link () when the link was established. “client_id” is
the client identification number of the application program that initially established the
link. “conn” is the client’s pkg connection structure.

Return: Not used.

J*

~ xmap_add_association ()
L

* Routine used by application programs to “bind” objects to other objects. An

* association can be formed between two objects linking them physically,

* although the link itself is invisible. The bind in effect groups the two

* objects in such a way that if one object is physically moved then the other

* object will maintain its relative position to the moved object.

*

* Objects that are associated can be associated in a MASTER_SLAVE or a GROUP
* relationship. In a MASTER_SLAVE association object 1 is slaved to object 2.
* If object 2 moves then object 1 follows it, but not vice versa. In a GROUP

* association the objects are treated as equals whereby if either object is

* moved the other object will follow it.

*/

int

xmap_add_association (handle_1, client_id_1, handle_2, client_id_2, client_id, relate, conn)
int handle_1, client_id_1; /* Handle/client id of first (from) object) */

int handle_2, client_id_2; /* Handle/client id of second (to) object) */

int client_id; /* Client id of program forming association */

21

“

int relate; /* Relationship between binding objects. */
struct pkg_conn *conn; /* Application program’s connection to Xmap. */

This routine invisibly binds two objects to form an association based on the location of the
objects relative to one another. “handle_1" and “client_id_1" uniquely describe the first,
or ‘from,’ object in the association. “handle_2" and “client_id_2" uniquely describe the
second, or ‘to,’ object in the association. “client_id” is the client identification number of
the application program forming the association. “relate” describes the relationship be-
tween the two objects as described in the description above. “conn” is the client’s pkg con-
nection structure.

Return: Handle id of the association.

J*
~ XIap_remove_association ()
x

* Routine used by application programs to remove associations between two

* objects.

*/

void

xmap_remove_association (handle, client_id, conn)

int handle; /* Handle of first association to remove */

int client_id; /* Client identifier number of association. */
struct pkg_conn *conn; /* Application program’s connection to Xmap. */

This routine removes a previously formed association between two objects. “handle” and
“client_id” uniquely identify the association. “conn” is the client’s pkg connection struc-
ture.

Return: Not used.

[*
~ xmap_add_rangefan ()
*

* Routine used by application programs to draw range fans on the map.

* This routine draws NEW range fans, or “objects” to Xmap, hence a handle id

* must be associated with the range fan (object).

®

* Return: handle id of new range fan.

*/

int

xmap_add_rangefan (unit_handle, unit_client, min_range, max_range, azimuth, trav_limits, cli-
ent_id, conn)

int unit_handle; /* Handle id of unit this range fan is from */
int unit_client; /* Client id of unit this range fan is from */
int min_rarnge, /* Minimum range of range fan (in meters) */
int max_range; /* Maximum range of range fan (in meters) */
int azimuth; /* Direction of range fan (in mils) */

22

int trav_limits; /* Traversal limits of range fan (in mils) */
int client_id; /* Client identifier number of range fan ¥/
struct pkg_conn *conn; /* Application program’s connection to Xmap. */

This routine instructs Xmap to draw a range fan based on the minimum and maximum
ranges (“min_range” and “max_range,” respectively), the “azimuth” (direction of center-
line of range fan), and traversal limits (width of range fan in mils in either direction off of
the azimuth). “min_range” and “max_range” are specified in meters. The origin of the
range fan is based on the location of the object denoted by “unit_handle” and “unit_client”.
“client_id” is the client identification number of the application program stating the range
fan. “conn” is the pkg connection structure of the client submitting the command.

Return: Handle id of the range fan.
[*

~ Xmap_remove_rangefan ()

®

* Routine used by application programs to remove range fans from Xmap.

*/

void

xmap_remove_rangefan (handle, client_id, conn)

int handle; /* Handle of first range fan to remove */

int client_id; /* Client identifier number of range fan */

struct pkg_conn *conn; /* Application program'’s connection to Xmap. */

This routine removes range fans from Xmap that were previously created using xmap_add_
rangefan (). “handle” is the handle id assigned to the range fan when it was created. “cli-
ent_id” is the client identification number of the client that created the range fan. “conn”
is the pkg connection structure of the client submitting the command.

Retumn: Not used.

Server Commands

Below is a list of commands available to the server program, Xmap, for communicating with
client application programs. For each command there is a brief explanation of its intended use as
well as its syntax.

/.
~ _xmap_connect ()
*

* Command used by Xmap to start listening for client connections.

%/

int

—xmap_connect ()
This is an initialization routine called by Xmap to create a network server for the indicated
service. “XMAP_PORT"™ is a user defined number and should appear in the /etc/services
file. Once the network server is initialized, the server starts listening for new connections
and polls any existing connections using the "select’ system call.

Return: The file descriptor ‘fd’ for the network server is returned upon success, otherwise a -1 is

returned.

/*®

~ _xmap close ()

&

* Command used by Xmap to inform application programs of an impending

* closing of the package connection.

*/

void

_xmap_close (conn)

struct pkg_conn *conn; /* Application program'’s connection to Xmap */
“Conn” is the pkg connection structure for a client that has connected to Xmap. Xmap is
equipped with a ‘quit’ button and in the event this button is pushed xmap sends a message
to any attached clients that it is terminating. This allows client applications to disconnect
gracefully.

Return: Not used.

J®

~ _xmap _send ()

®

* Routine for Xmap to send information to application program.
*/

void

—xmap_send (msg_type, msg, conn)

int msg_type; /* Define (from libxmap.h) */

char *msg; /* Contents of message */

struct pkg_conn *conn; /* Application program’s connection to Xmap */

“Msg_type"” is a #define that specifies the type of message that is being sent to the client
application. “Msg” is the actual message. “Conn” is the client’s pkg connection structure.

Return: Not used.
° I.
~ _xmap_button_press ()
~ .
* Routine for Xmap to notify application program of a button press.
¥/
void
_xmap_button_press (handle, connection, button, map_x, map_y, fid, conn)
int handle; /* Handle id of affected object */
int connection; /* Connection number of client */
int button, /* Number of button that was pressed */
map_x, /* X (East) map grid location of button press */
map_y; /* Y (North) map gird location of button press /
dkb_factid_t fid; /* Fact id of object pressed */
struct pkg _conn *conn; /* Application program’s connection to Xmap */

This routine is used to notify appropriate client applications of generic button press events.
An appropriate client is one that indicated upon connecting that it wanted to be informed
of any button events. A generic button press event includes a button press anywhere on the
background or on a unit symbol. “Handle” is the unique identifier of the object selected by
aclient. “Connection” is the unique identifier of the client. These two attributes are needed
for Xmap to distinguish one object from another. “Button” is a #define from libxmap.h that
specifies which button was pressed. “Map_x" and “map_y" are the easting and northing
map coordinates of the object that was selected. “Fid” is the IDT factid of the fact that is
associated with the object that is selected. Sometimes this value will be NULL. “Conn” is
the pkg connection of the client to notify.
Return: Not used.

J®
:_xmap_llne_dlck ()

* Routine for Xmap to notify application program of a line click.
*/

void
_xmap_line_click (handle, connection, button, fid, coords, conn)

int handle; /* Handle id of affected object */
. int connection; /* Connection number of client */
int button; /* Button that was pressed to generate this even
dkb_factid_t fid; /* Fact id of object pressed */
char *coords; /* A string containing all the grid coordinates */

25

struct pkg_conn *conn, /* Application program’s connection to Xmap */

This routine is used to inform an appropriate client of a line selection. An appropriate client
is the same as defined in _xmap_button_ press (). “Handle,” “connection,” “button,” “fid,”
and “conn” are the same as described in _xmap_button_press (). “Coords” is a string con-
sisting of all the UTM coordinates of the line segments that make up the line.

Return: Not used.

/¥

~ _xmap_line_change ()

»

* Routine used by Xmap to notify application programs of changes to already

* drawn lines. The complete list of new coordinates is specified.
*/

void

—xmap_line_change (client_id, handle, fid, coords, conn)

int client_id; /* Client identifier number. */

int handle; /* Handle id of line */

dkb_factid_t fid; /* Fact id associated with this line. */

char *coords; /* List of coords defining line segments. */

struct pkg_conn *conn; /* Application program’s connection to Xmap. */
This routine is used to notify an appropriate client of a change to a line. An appropriate
client is the same as described in _xmap_send(). Xmap gives the user the ability to edit an
existing line. When this is done, the appropriate clients must be informed of the changes
so they can update their database if necessary. Note that it is Xmap which provides the capa-
bility to edit lines, not client application programs. “Handle,” “connection,” “button,”
“fid,” and “conn” are the same as described in _xmap_butt on_ press (). “Coords” is the
same as described in _xmap_line_click (). The coords string setup looks like: “xy; x y;”.
This setup allows for ease of parsing.

Return: Not used.

J*

~ _xmap_symbol_change ()
]

* Routine for Xmap to notify application program of a change in location
* of a symbol that is the SLAVE in an association.

*/

void

_xmap_symbol_change (handle, connection, map_x, map_y, fid, conn)

int handle; /* Handle id of affected object */

int connection; /* Connection number of client */

int map_x, /* X (East) map grid location of button press */
map_y; /*Y (North) map grid location of button press */

dkb_factid_t fid: /* Fact id of object pressed */

struct pkg_conn *conn; /* Application program’s connection to Xmap */

26

This routine is used to inform a client application program of a change in location of the
SLAVE in an association (relationship: MASTER-SLAVE). For a more detailed descrip-
tion of associations see the description for xmap_add_association (). “Handle,” “connec-
tion,” “map_x,” “map_y,” “fid,” and “conn” are the same as described in _xmap_but-
ton_press().

Return: Not used.

J*

: _Xmap_error ()

* Routine for Xmap to notify application program of an error in an action
* that the application program sent Xmap.

*/

void

_xmap_error (handle, msg_type, conn)

int handle; /* Handle id of affected object */

int msg_type; /* Message type from application program */

struct pkg_conn *conn; /* Application program'’s connection to Xmap */
This routine is used to inform the clients of errors made in an action that the client sent to
Xmap. This could include mixing up the order of attributes, sending inappropriate data
types, specifying unknown objects, etc. It is the client’s responsibility to correct the error
condition. “Msg_type” and “conn” are the same as described in _xmap_send (). “Handle”
is the same as described in _xmap_button_press ().

Return: Not used.

INTENTIONALLY LEFT BLANK.

ACRONYMS

Advanced Computational and Informational Sciences Directorate
Army Research Laboratory

Combat Net Radios

Human Engineering Laboratory Counter—Air Program
Information Distribution Technology

Military Computer Science Branch

Smart Weapons Systems LABCOM Cooperative Program

INTENTIONALLY LEFT BLANK.

No. of
Copigs Ormamization
2

Administrator
Defense Technical Info Censer
ATIN: DTIC-DDA

Cameron Station
Alexandria, VA 22304-6145

Commander

U.S. Army Materiel Command
ATIN: AMCAM

5001 Eisenhower Ave.
Alexandsia, VA 22333-0001

Director
U.S. Army Research Laboratory
ATTIN: AMSRL-OP-CI:AD.

No. of

Copics Organization

1

Tech Publishing (Qass. anly)
2800 Powder Mill Rd.
Adelphi, MD 20783-1145
Director
U.S. Ammy Research Laboratory (Unclass. caly)

ATIN: AMSRL-OP-CI-AD,
Records Management

2800 Powder Mill Rd.

Adeiphi, MD 20783-1145

Commander

U.S. Army Armament Research,
Development, and Engineering Center

ATIN: SMCAR-TDC

Picatinny Arsenal, NJ 07806-5000

Director

Benct Weapons Laboratory

U.S. Armmy Ammament Research,
Development, and Engineering Center

ATTN: SMCAR-CCB-TL

Watervliet, NY 12189-4050

Director

U.S. Amy Advanced Systems Research
and Analysis Office (ATCOM)

ATTN: AMSAT-R-NR, M/S 219-1

Ames Research Center

Moffeu Field, CA 94035-1000

31

Commander

U.S. Ammy Missile Command
ATIN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

Commander

U.S. Amy Tank-Automotive Command
ATTN: AMSTA-JSK (Ammor Eng. Br.)
Warren, Ml 48397-5000

Director

U.S. Armmy TRADOC Analysis Command
ATTN: ATRC-WSR

White Sands Missile Range, NM 88002-5502

Commansant

U.S. Ammy Infantry School

ATTN: ATSH-CD (Security Mgr.)
Fort Beaning, GA 31905-5660

Commandant

U.S. Army Infantry School
ATIN: ATSH-WCB-O

Fort Benning, GA 31905-5000

Al Provin

Dir, USAMSAA

ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM
ATIN: AMSTE-TC

Dir, USAERDEC
ATTN: SCBRD-RT

Cdr, USACBDCOM
ATTN: AMSCB-CII

Dir, USARL
ATTN: AMSRL-SL-I

Dir, USARL
ATTN: AMSRL-OP-AP-L

No. of
Conies Qeganization
Abeniecn Proving Ground

12 Dir, USARL
ATTN: AMSRL-CI-C, Walter B. Sturek

AMSRL-CI-CC,
Samuel C. Chamberlain
Douglas A. Gwyn
George W. Hartwig, Jr.
Maria C. Lopez
Banty R. Reichard

AMSRL-CI-S, Andrew Mark

AMSRL-CI-SA, Eric G. Heilman

AMSRL-CI-SB,
Virginia A. Kaste

i g

g g
Ve

SRR T [Al LR S R BRI T e RS T M B s T, g i e g b ot LT S i e
SRS ' e R e U L B R T g P S o L SRR

‘This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers (0 the items/questions below will aid us in our efforts.

1. ARL Report Number ___ ARL-TR—498 Date of Report __August 1994
2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for
which the report will be used.)

4, Specifically, how is the report being used? (Information source, design data, procedure, source of
ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,
operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

' Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

e

DEPARTMENT OF THE ARMY

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

Postage will be paid by sddresses

Director

U.S. Army Research Laboratory

ATTN: AMSRL-OP-AP-L

Aberdeen Proving Ground, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

